3.2783 \(\int \frac {(c x)^{-1+\frac {3 n}{2}}}{\sqrt {a+b x^n}} \, dx\)

Optimal. Leaf size=91 \[ \frac {x^{-n} (c x)^{3 n/2} \sqrt {a+b x^n}}{b c n}-\frac {a x^{-3 n/2} (c x)^{3 n/2} \tanh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a+b x^n}}\right )}{b^{3/2} c n} \]

[Out]

-a*(c*x)^(3/2*n)*arctanh(x^(1/2*n)*b^(1/2)/(a+b*x^n)^(1/2))/b^(3/2)/c/n/(x^(3/2*n))+(c*x)^(3/2*n)*(a+b*x^n)^(1
/2)/b/c/n/(x^n)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {357, 355, 288, 206} \[ \frac {x^{-n} (c x)^{3 n/2} \sqrt {a+b x^n}}{b c n}-\frac {a x^{-3 n/2} (c x)^{3 n/2} \tanh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a+b x^n}}\right )}{b^{3/2} c n} \]

Antiderivative was successfully verified.

[In]

Int[(c*x)^(-1 + (3*n)/2)/Sqrt[a + b*x^n],x]

[Out]

((c*x)^((3*n)/2)*Sqrt[a + b*x^n])/(b*c*n*x^n) - (a*(c*x)^((3*n)/2)*ArcTanh[(Sqrt[b]*x^(n/2))/Sqrt[a + b*x^n]])
/(b^(3/2)*c*n*x^((3*n)/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 355

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[p]}, Dist[(k*a^(p + Simplify[
(m + 1)/n]))/n, Subst[Int[x^(k*Simplify[(m + 1)/n] - 1)/(1 - b*x^k)^(p + Simplify[(m + 1)/n] + 1), x], x, x^(n
/k)/(a + b*x^n)^(1/k)], x]] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p + Simplify[(m + 1)/n]] && LtQ[-1, p, 0]

Rule 357

Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracPart[m])/x^FracP
art[m], Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n}, x] && IntegerQ[p + Simplify[(m + 1)/n]] && LtQ
[-1, p, 0]

Rubi steps

\begin {align*} \int \frac {(c x)^{-1+\frac {3 n}{2}}}{\sqrt {a+b x^n}} \, dx &=\frac {\left (x^{-3 n/2} (c x)^{3 n/2}\right ) \int \frac {x^{-1+\frac {3 n}{2}}}{\sqrt {a+b x^n}} \, dx}{c}\\ &=\frac {\left (2 a x^{-3 n/2} (c x)^{3 n/2}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\left (1-b x^2\right )^2} \, dx,x,\frac {x^{n/2}}{\sqrt {a+b x^n}}\right )}{c n}\\ &=\frac {x^{-n} (c x)^{3 n/2} \sqrt {a+b x^n}}{b c n}-\frac {\left (a x^{-3 n/2} (c x)^{3 n/2}\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^{n/2}}{\sqrt {a+b x^n}}\right )}{b c n}\\ &=\frac {x^{-n} (c x)^{3 n/2} \sqrt {a+b x^n}}{b c n}-\frac {a x^{-3 n/2} (c x)^{3 n/2} \tanh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a+b x^n}}\right )}{b^{3/2} c n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 110, normalized size = 1.21 \[ \frac {a x^{1-\frac {3 n}{2}} (c x)^{\frac {3 n}{2}-1} \sqrt {\frac {b x^n}{a}+1} \left (\sqrt {b} x^{n/2} \sqrt {\frac {a+b x^n}{a}}-\sqrt {a} \sinh ^{-1}\left (\frac {\sqrt {b} x^{n/2}}{\sqrt {a}}\right )\right )}{b^{3/2} n \sqrt {a+b x^n}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(-1 + (3*n)/2)/Sqrt[a + b*x^n],x]

[Out]

(a*x^(1 - (3*n)/2)*(c*x)^(-1 + (3*n)/2)*Sqrt[1 + (b*x^n)/a]*(Sqrt[b]*x^(n/2)*Sqrt[(a + b*x^n)/a] - Sqrt[a]*Arc
Sinh[(Sqrt[b]*x^(n/2))/Sqrt[a]]))/(b^(3/2)*n*Sqrt[a + b*x^n])

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 142, normalized size = 1.56 \[ \left [\frac {2 \, \sqrt {b x^{n} + a} b c^{\frac {3}{2} \, n - 1} x^{\frac {1}{2} \, n} + a \sqrt {b} c^{\frac {3}{2} \, n - 1} \log \left (2 \, \sqrt {b x^{n} + a} \sqrt {b} x^{\frac {1}{2} \, n} - 2 \, b x^{n} - a\right )}{2 \, b^{2} n}, \frac {\sqrt {b x^{n} + a} b c^{\frac {3}{2} \, n - 1} x^{\frac {1}{2} \, n} + a \sqrt {-b} c^{\frac {3}{2} \, n - 1} \arctan \left (\frac {\sqrt {-b} x^{\frac {1}{2} \, n}}{\sqrt {b x^{n} + a}}\right )}{b^{2} n}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(-1+3/2*n)/(a+b*x^n)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(2*sqrt(b*x^n + a)*b*c^(3/2*n - 1)*x^(1/2*n) + a*sqrt(b)*c^(3/2*n - 1)*log(2*sqrt(b*x^n + a)*sqrt(b)*x^(1
/2*n) - 2*b*x^n - a))/(b^2*n), (sqrt(b*x^n + a)*b*c^(3/2*n - 1)*x^(1/2*n) + a*sqrt(-b)*c^(3/2*n - 1)*arctan(sq
rt(-b)*x^(1/2*n)/sqrt(b*x^n + a)))/(b^2*n)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c x\right )^{\frac {3}{2} \, n - 1}}{\sqrt {b x^{n} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(-1+3/2*n)/(a+b*x^n)^(1/2),x, algorithm="giac")

[Out]

integrate((c*x)^(3/2*n - 1)/sqrt(b*x^n + a), x)

________________________________________________________________________________________

maple [F]  time = 0.22, size = 0, normalized size = 0.00 \[ \int \frac {\left (c x \right )^{\frac {3 n}{2}-1}}{\sqrt {b \,x^{n}+a}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(-1+3/2*n)/(b*x^n+a)^(1/2),x)

[Out]

int((c*x)^(-1+3/2*n)/(b*x^n+a)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c x\right )^{\frac {3}{2} \, n - 1}}{\sqrt {b x^{n} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(-1+3/2*n)/(a+b*x^n)^(1/2),x, algorithm="maxima")

[Out]

integrate((c*x)^(3/2*n - 1)/sqrt(b*x^n + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,x\right )}^{\frac {3\,n}{2}-1}}{\sqrt {a+b\,x^n}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^((3*n)/2 - 1)/(a + b*x^n)^(1/2),x)

[Out]

int((c*x)^((3*n)/2 - 1)/(a + b*x^n)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 8.79, size = 66, normalized size = 0.73 \[ \frac {\sqrt {a} c^{\frac {3 n}{2}} x^{\frac {n}{2}} \sqrt {1 + \frac {b x^{n}}{a}}}{b c n} - \frac {a c^{\frac {3 n}{2}} \operatorname {asinh}{\left (\frac {\sqrt {b} x^{\frac {n}{2}}}{\sqrt {a}} \right )}}{b^{\frac {3}{2}} c n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(-1+3/2*n)/(a+b*x**n)**(1/2),x)

[Out]

sqrt(a)*c**(3*n/2)*x**(n/2)*sqrt(1 + b*x**n/a)/(b*c*n) - a*c**(3*n/2)*asinh(sqrt(b)*x**(n/2)/sqrt(a))/(b**(3/2
)*c*n)

________________________________________________________________________________________